47 research outputs found

    Optimizing Energy Storage Participation in Emerging Power Markets

    Get PDF
    The growing amount of intermittent renewables in power generation creates challenges for real-time matching of supply and demand in the power grid. Emerging ancillary power markets provide new incentives to consumers (e.g., electrical vehicles, data centers, and others) to perform demand response to help stabilize the electricity grid. A promising class of potential demand response providers includes energy storage systems (ESSs). This paper evaluates the benefits of using various types of novel ESS technologies for a variety of emerging smart grid demand response programs, such as regulation services reserves (RSRs), contingency reserves, and peak shaving. We model, formulate and solve optimization problems to maximize the net profit of ESSs in providing each demand response. Our solution selects the optimal power and energy capacities of the ESS, determines the optimal reserve value to provide as well as the ESS real-time operational policy for program participation. Our results highlight that applying ultra-capacitors and flywheels in RSR has the potential to be up to 30 times more profitable than using common battery technologies such as LI and LA batteries for peak shaving.Comment: The full (longer and extended) version of the paper accepted in IGSC 201

    Task mapping on a dragonfly supercomputer

    Full text link
    The dragonfly network topology has recently gained traction in the design of high performance computing (HPC) systems and has been implemented in large-scale supercomputers. The impact of task mapping, i.e., placement of MPI ranks onto compute cores, on the communication performance of applications on dragonfly networks has not been comprehensively investigated on real large-scale systems. This paper demonstrates that task mapping affects the communication overhead significantly in dragonflies and the magnitude of this effect is sensitive to the application, job size, and the OpenMP settings. Among the three task mapping algorithms we study (in-order, random, and recursive coordinate bisection), selecting a suitable task mapper reduces application communication time by up to 47%

    Optimizing energy storage participation in emerging power markets

    Full text link
    The growing amount of intermittent renewables in power generation creates challenges for real-time matching of supply and demand in the power grid. Emerging ancillary power markets provide new incentives to consumers (e.g., electrical vehicles, data centers, and others) to perform demand response to help stabilize the electricity grid. A promising class of potential demand response providers includes energy storage systems (ESSs). This paper evaluates the benefits of using various types of novel ESS technologies for a variety of emerging smart grid demand response programs, such as regulation services reserves (RSRs), contingency reserves, and peak shaving. We model, formulate and solve optimization problems to maximize the net profit of ESSs in providing each demand response. Our solution selects the optimal power and energy capacities of the ESS, determines the optimal reserve value to provide as well as the ESS real-time operational policy for program participation. Our results highlight that applying ultra-capacitors and flywheels in RSR has the potential to be up to 30 times more profitable than using common battery technologies such as LI and LA batteries for peak shaving

    User-profile-based analytics for detecting cloud security breaches

    Full text link
    While the growth of cloud-based technologies has benefited the society tremendously, it has also increased the surface area for cyber attacks. Given that cloud services are prevalent today, it is critical to devise systems that detect intrusions. One form of security breach in the cloud is when cyber-criminals compromise Virtual Machines (VMs) of unwitting users and, then, utilize user resources to run time-consuming, malicious, or illegal applications for their own benefit. This work proposes a method to detect unusual resource usage trends and alert the user and the administrator in real time. We experiment with three categories of methods: simple statistical techniques, unsupervised classification, and regression. So far, our approach successfully detects anomalous resource usage when experimenting with typical trends synthesized from published real-world web server logs and cluster traces. We observe the best results with unsupervised classification, which gives an average F1-score of 0.83 for web server logs and 0.95 for the cluster traces

    Adaptive Power and Resource Management Techniques for Multithreaded Workloads

    Get PDF
    Abstract-As today's computing trends are moving towards the cloud, meeting the increasing computational demand while minimizing the energy costs in data centers has become essential. This work introduces two adaptive techniques to reduce the energy consumption of the computing clusters through power and resource management on multi-core processors. We first present a novel power capping technique to constrain the power consumption of computing nodes. Our technique combines Dynamic Voltage-Frequency Scaling (DVFS) and thread allocation on multi-core systems. By utilizing machine learning techniques, our power capping method is able to meet the power budgets 82% of the time without requiring any power measurement device and reduces the energy consumption by 51.6% on average in comparison to the state-of-the-art techniques. We then introduce an autonomous resource management technique for consolidated multi-threaded workloads running on multi-core servers. Our technique first classifies applications according to their energy efficiency measure, then proportionally allocates resources for co-scheduled applications to improve the energy efficiency. The proposed technique improves the energy efficiency by 17% in comparison to state-of-the-art co-scheduling policies. I. INTRODUCTION Energy-related costs are among the major contributors to the total cost of ownership of today's data centers and high performance computing (HPC) clusters. Therefore, future computing clusters are required to be energy-efficient in order to be able to meet the continuously increasing computational demand. Moreover, administration and management of the data center resources has become significantly complex, due to increasing number of servers installed on data centers. Therefore, designing autonomous techniques to optimally manage the limited data center resources is essential to achieve sustainability in the cloud era. The achievable maximum performance of a computing cluster is determined by (1) infrastructural/cost limitations (e.g, power delivery, cooling capacity, electricity cost) and/or (2) available hardware resources (e.g., CPU, disk size). Optimizing the performance under such constraints (i,e., power, resource) is critically important to improve the energy efficiency, therefore to reduce to cost of computing. Moreover, the emergence of multi-threaded applications on cloud resources bring additional challenges for optimizing the performanceenergy tradeoffs under resource constraints, due to their complex characteristics such as performance scalability and intercore communication. In this work, we present two adaptive management techniques for multi-threaded workloads to improve the energ

    Optimizing Energy Storage Participation in Emerging Power Markets

    Get PDF
    The growing amount of intermittent renewables in power generation creates challenges for real-time matching of supply and demand in the power grid. Emerging ancillary power markets provide new incentives to consumers (e.g., electrical vehicles, data centers, and others) to perform demand response to help stabilize the electricity grid. A promising class of potential demand response providers includes energy storage systems (ESSs). This paper evaluates the benefits of using various types of novel ESS technologies for a variety of emerging smart grid demand response programs, such as regulation services reserves (RSRs), contingency reserves, and peak shaving. We model, formulate and solve optimization problems to maximize the net profit of ESSs in providing each demand response. Our solution selects the optimal power and energy capacities of the ESS, determines the optimal reserve value to provide as well as the ESS real-time operational policy for program participation. Our results highlight that applying ultra-capacitors and flywheels in RSR has the potential to be up to 30 times more profitable than using common battery technologies such as LI and LA batteries for peak shaving

    Modeling and Dynamic Management of 3D Multicore Systems with Liquid Cooling

    Get PDF
    Three-dimensional (3D) circuits reduce communication delay in multicore SoCs, and enable efficient integration of cores, memories, sensors, and RF devices. However, vertical integration of layers exacerbates the reliability and thermal problems, and cooling efficiency becomes a limiting factor. Liquid cooling is a solution to overcome the accelerated thermal problems imposed by multi-layer architectures. In this paper, we first provide a 3D thermal simulation model including liquid cooling, supporting both fixed and variable fluid injection rates. Our model has been integrated in HotSpot to study the impact on multicore SoCs. We design and evaluate several dynamic management policies that complement liquid cooling. Our results for 3D multicore SoCs, which are based on a 3D version of UltraSPARC T1, show that thermal management approaches that combine liquid cooling with proactive task allocation are extremely effective in preventing temperature problems. Our proactive management technique provides an additional 75% average reduction in hot spots in comparison to applying only liquid cooling. Furthermore, for systems capable of varying the coolant flow rate at runtime, our feedback controller increases the improvement to 95% on average

    Optimal Multi-Processor SoC Thermal Simulation via Adaptive Differential Equation Solvers

    Get PDF
    Thermal management is a critical challenge in the design of high performance multi-processor system-on-chips (MPSoCs). Therefore, accurate and fast thermal modeling tools are necessary for efficiently analyzing the thermal profiles of MPSoCs. This paper advances state-of-the-art MPSoC thermal modeling approaches in several directions. Our first contribution is a novel matrix statespace compatible representation of MPSoC thermal behavior. This representation can be used to choose the “best fit” solver among various ordinary differential equation (ODE) solvers according to the required accuracy and simulation speed. Then, we exploit this representation to develop an adaptive thermal simulation infrastructure that provides the shortest simulation time for the desired thermal modeling accuracy and the given MPSoC floorplan. The experimental results, which are based on a commercial 8-core MPSoC, show that our thermal simulation method achieves both higher thermal estimation accuracy (6x better) and faster simulation time (up to 70%) when compared to state-of-the-art MPSoC thermal simulators

    A Simulation Methodology for Reliability Analysis in Multi-Core SoCs

    Get PDF
    Reliability has become a significant challenge for system design in new process technologies. Higher integration levels dramatically increase power densities, which leads to higher temperature and adverse effects on reliability. In this paper, we introduce a simulation methodology to analyze reliability of multi-core SoCs. The proposed simulator is the first to provide system-on-chip level fine-grained reliability analysis. We use our simulation methodology to study the reliability effects of design choices such as thermal packaging and placement, as well as runtime events such as power management policies and workload distributions
    corecore